То приближение лучше абсолютная погрешность которого. Относительная и абсолютная погрешность: понятие, расчет и свойства

В процессе измерения чего-либо нужно учитывать, что полученный результат еще неконечный. Чтобы более точно высчитать искомую величину, необходимо учитывать погрешность. Высчитать ее достаточно просто.

Как найти погрешность – вычисление

Разновидности погрешностей:

  • относительная;
  • абсолютная.

Что нужно для вычисления:

  • калькулятор;
  • результаты нескольких измерений одной величины.

Как найти погрешность – последовательность действий

  • Измерьте величину 3 – 5 раз.
  • Сложите все результаты и разделите полученное число на их количество. Данное число является действительным значением.
  • Вычислите абсолютную погрешность путем вычитания полученного в предыдущем действии значения из результатов измерений. Формула: ∆Х = Хисл – Хист. В ходе вычислений можно получить как положительные, так и отрицательные значения. В любом случае берется модуль результата. Если необходимо узнать абсолютную погрешность суммы двух величин, то вычисления проводятся согласно такой формуле: ∆(Х+Y) = ∆Х+∆Y. Она также работает при необходимости расчета погрешности разности двух величин: ∆(Х-Y) = ∆Х+∆Y.
  • Узнайте относительную погрешность для каждого из измерений. В таком случае нужно разделить полученную абсолютную погрешность на действительное значение. Затем умножьте частное на 100%. ε(x)=Δx/x0*100%. Значение можно и не переводить в проценты.
  • Чтобы получить более точное значение погрешности, необходимо найти среднее квадратическое отклонение. Ищется оно достаточно просто: вычислите квадраты всех значений абсолютной погрешности, а затем найдите их сумму. Полученный результат необходимо разделить на число (N-1), в котором N – это число всех измерений. Последним действием станет извлечение корня из полученного результата. После таких вычислений будет получено среднее квадратическое отклонение, которое обычно характеризует погрешность измерений.
  • Для нахождения предельной абсолютной погрешности необходимо найти самое маленькое число, которое по своему значению равно или превышает значение абсолютной погрешности.
  • Предельная относительная погрешность ищется таким же методом, только нужно находить число, которое больше или равно значения относительной погрешности.


Погрешности измерений возникают по различным причинам и влияют на точность полученного значения. Зная, чему равна погрешность, можно узнать более точное значение проведенного измерения.

При прямых измерениях

1. Пусть на вольтметре однократно измерены два напряжения U 1 = 10 В, U 2 = 200 В. Вольтметр имеет следующие характеристики: класс точности d кл т = 0,2, U max = 300 В.

Определим абсолютную и относительную погрешности этих измерений.

Так как оба измерения произведены на одном приборе, то DU 1 = DU 2 и вычисляются по формуле (В.4)

Согласно определению относительные погрешности U 1 и U 2 соответственно равны

ε 1 = 0,6 ∙ В / 10 В = 0,06 = 6 %,

ε 2 = 0,6 ∙ В / 200 В = 0,003 = 0,3 %.

Из приведенных результатов вычислений ε 1 и ε 2 видно, что ε 1 значительно больше ε 2 .

Отсюда вытекает правило: следует выбирать прибор с таким пределом измерений, чтобы показания были в последней трети шкалы.

2. Пусть некоторая величина измерена многократно, то есть произведено n отдельных измерений этой величины А х 1 , А х 2 ,..., А х 3 .

Тогда для вычисления абсолютной погрешности производят следующие операции:

1) по формуле (В.5) определяют среднее арифметическое значение А 0 измеряемой величины;

2) вычисляют сумму квадратов отклонений отдельных измерений от найденного среднего арифметического и по формуле (В.6) определяют среднюю квадратическую погрешность, которая и характеризует абсолютную погрешность единичного измерения при многократных прямых измерениях некоторой величины;

3) относительная погрешность ε вычисляется по формуле (В.2).

Вычисление абсолютной и относительной погрешности

При косвенном измерении

Вычисление погрешностей при косвенных измерениях – более сложная задача, так как в этом случае искомая величина является функцией других вспомогательных величин, измерение которых сопровождается появлением погрешностей. Обычно при измерениях, если не считать промахов, случайные погрешности оказываются весьма малыми по сравнению с измеряемой величиной. Они настолько малы, что вторые и более высокие степени погрешностей лежат за пределами точностей измерений и ими можно пренебречь. Из-за малости погрешностей для получения формулы погрешности
косвенно измеряемой величины применяют методы дифференциального исчисления. При косвенном измерении величины, когда непосредственно измеряются величины, связанные с искомой некоторой мaтематической зависимостью, удобнее вначале определить относительную погрешность и уже
через найденную относительную погрешность вычислять абсолютную погрешность измерения.

Дифференциальное исчисление дает наиболее простой способ определения относительной погрешности при косвенном измерении.

Пусть искомая величина А связана функциональной зависимостью с несколькими независимыми непосредственно измеряемыми величинами x 1 ,
x 2 , ..., x k , т. е.

A = f (x 1 , x 2 , ..., x k ).

Для определения относительной погрешности величины А берется натуральный логарифм от обеих частей равенства

ln A = ln f (x 1 , x 2 , ..., x k ).

Затем вычисляется дифференциал натурального логарифма функции
A = f (x 1 ,x 2 , ..., x k ),

dlnA = dlnf (x 1 , x 2 , ..., x k )

В полученном выражении производятся все возможные алгебраические преобразования и упрощения. После этого все символы дифференциалов d заменяются на символы погрешности D, причем отрицательные знаки перед дифференциалами независимых переменных заменяются положительными, т. е. берется наиболее неблагоприятный случай, когда все погрешности складываются. В этом случае вычисляется максимальная погрешность результата.

С учетом вышесказанного

но ε = D А / А

Данное выражение является формулой относительной погрешности величины А при косвенных измерениях, оно определяет относительную погрешность искомой величины, через относительные погрешности, измеряемых величин. Вычислив по формуле (В.11) относительную погрешность,
определяют абсолютную погрешность величины А как произведение относительной погрешности на рассчитанное значение А т. е.

DА = εА , (В.12)

где ε выражено безразмерным числом.

Итак, относительную и абсолютную погрешности косвенно измеряемой величины следует рассчитать в такой последовательности:

1) берется формула, по которой рассчитывается искомая величина (расчетная формула);

2) берется натуральный логарифм от обеих частей расчетной формулы;

3) вычисляется полный дифференциал натурального логарифма искомой величины;

4) в полученном выражении производятся все возможные алгебраические преобразования и упрощения;

5) символ дифференциалов d заменяется на символ погрешности D, при этом все отрицательные знаки перед дифференциалами независимых переменных заменяются на положительные (величина относительной погрешности будет максимальной) и получается формула относительной погрешности;

6) рассчитывается относительная погрешность измеряемой величины;

7) по рассчитанной относительной погрешности вычисляется абсолютная погрешность косвенного измерения по формуле (В.12).

Рассмотрим несколько примеров расчета относительной и абсолютной погрешностей при косвенном измерении.

1. Искомая величина А связана с непосредственно измеряемыми величинами х , у , z соотношением

где a и b – постоянные величины.

2. Возьмем натуральный логарифм от выражения (В.13)

3. Вычислим полный дифференциал натурального логарифма искомой величины А , то есть дифференцируем (В.13)

4. Производим преобразования. Учитывая, что dа = 0, так как а = const, cos у /sin y = ctg y , получаем:

5. Заменим символы дифференциалов символами погрешностей и знак «минус» перед дифференциалом на знак «плюс»

6. Рассчитываем относительную погрешность измеряемой величины.

7. По рассчитанной относительной погрешности вычисляется абсолютная погрешность косвенного измерения по формуле (В.12), т. е.

Определяется длина волны желтого цвета спектральной линии ртути при помощи дифракционной решетки (используя принятую последовательность вычисления относительной и абсолютной погрешностей для длины волны желтого цвета).

1. Длина волны желтого цвета в этом случае определяется по формуле:

где С – постоянная дифракционной решетки (косвенно измеряемая величина); φ ж – угол дифракции желтой линии в данном порядке спектра (непосредственно измеряемая величина); K ж – порядок спектра, в котором производилось наблюдение.

Постоянная дифракционной решетки вычисляется по формуле

где K з – порядок спектра зеленой линии; λ з – известная длина волны зеленого цвета (λ з – постоянная); φ з – угол дифракции зеленой линии в данном порядке спектра (непосредственно измеряемая величина).

Тогда с учетом выражения (В.15)

(В.16)

где K з, K ж – наблюдаемые, которые считаются постоянными; φ з, φ ж – являют-
ся непосредственно измеряемыми величинами.

Выражение (В.16) – расчетная формула длины волны желтого цвета, определяемой при помощи дифракционной решетки.

4. dK з = 0; dK ж = 0; dλ з = 0, так как K з, K ж и λ з – постоянные величины;

Тогда

5. (В.17)

где Dφ ж, Dφ з – абсолютные погрешности измерения угла дифракции желтой
и зеленой линий спектра.

6. Рассчитываем относительную погрешность длины волны желтого цвета.

7. Вычисляем абсолютную погрешность длины волны желтого цвета:

Dλ ж = ελ ж.

Абсолютная и относительная погрешность числа.

В качестве характеристик точности приближенных величин любого происхождения вводятся понятия абсолютной и относительной погрешности этих величин.

Обозначим через а приближение к точному числу А.

Определени . Величина называется погрешностью приближенного числаа.

Определение . Абсолютной погрешностью приближенного числа а называется величина
.

Практически точное число А обычно неизвестно, но мы всегда можем указать границы, в которых изменяется абсолютная погрешность.

Определение . Предельной абсолютной погрешностью приближенного числа а называется наименьшая из верхних границ для величины , которую можно найти при данном способе получения числаа.

На практике в качестве выбирают одну из верхних границ для , достаточно близкую к наименьшей.

Поскольку
, то
. Иногда пишут:
.

Абсолютная погрешность - это разница между результатом измерения

и истинным (действительным) значением измеряемой величины.

Абсолютная погрешность и предельная абсолютная погрешность не достаточны для характеристики точности измерения или вычисления. Качественно более существенна величина относительной погрешности.

Определение . Относительной погрешностью приближенного числа а назовем величину:

Определение . Предельной относительной погрешностью приближенного числа а назовем величину

Так как
.

Таким образом, относительная погрешность определяет фактически величину абсолютной погрешности, приходящейся на единицу измеряемого или вычисляемого приближенного числа а.

Пример. Округляя точные числа А до трех значащих цифр, определить

абсолютную Dи относительную δ погрешности полученных приближенных

Дано:

Найти:

∆-абсолютная погрешность

δ –относительная погрешность

Решение:

=|-13.327-(-13.3)|=0.027

,a0

*100%=0.203%

Ответ: =0,027; δ=0.203%

2.Десятичная запись приближенного числа. Значащая цифра. Верные знаки числа(определение верных и значащих цифр, примеры; теория о связи относительной погрешности и числа верных знаков).

Верные знаки числа.

Определение . Значащей цифрой приближенного числа а называется всякая цифра, отличная от нуля, и нуль, если он расположен между значащими цифрами или является представителем сохраненного десятичного разряда.

Например, в числе 0,00507 =
имеем 3 значащие цифры, а в числе 0,005070=
значащие цифры, т.е. нуль справа, сохраняя десятичный разряд, является значащим.

Условимся впредь нули справа записывать, если только они являются значащими. Тогда, иначе говоря,

значащими являются все цифры числа а, кроме нулей слева.

В десятичной системе счисления всякое число а может быть представлено в виде конечной или бесконечной суммы (десятичной дроби):

где
,
- первая значащая цифра, m - целое число, называемое старшим десятичным разрядом числа а.

Например, 518,3 =, m=2.

Пользуясь записью , введем понятие о верных десятичных знаках (в значащих цифрах) приближенно-

го числа.

Определение . Говорят, что в приближенном числе а формы n - первых значащих цифр ,

где i= m, m-1,..., m-n+1 являются верными, если абсолютная погрешность этого числа не превышает половины единицы разряда, выражаемого n-й значащей цифрой:

В противном случае последняя цифра
называется сомнительной.

При записи приближенного числа без указания его погрешности требуют, чтобы все записанные цифры

были верными. Это требование соблюдено во всех математических таблицах.

Термин “n верных знаков” характеризует лишь степень точности приближенного числа и его не следует понимать так, что n первых значащих цифр приближенного числа а совпадает с соответствующими цифрами точного числа А. Например, у чисел А=10, а=9,997 все значащие цифры различны, но число а имеет 3 верных значащих цифры. Действительно, здесь m=0 и n=3 (находим подбором).

Абсолютная погрешность вычислений находится по формуле:

Знак модуля показывает, что нам без разницы, какое значение больше, а какое меньше. Важно, насколько далеко приближенный результат отклонился от точного значения в ту или иную сторону.

Относительная погрешность вычислений находится по формуле:
, или, то же самое:

Относительная погрешность показывает, на сколько процентов приближенный результат отклонился от точного значения. Существует версия формулы и без домножения на 100%, но на практике я почти всегда вижу вышеприведенный вариант с процентами.

После короткой справки вернемся к нашей задаче, в которой мы вычислили приближенное значение функции с помощью дифференциала.

Вычислим точное значение функции с помощью микрокалькулятора:
, строго говоря, значение всё равно приближенное, но мы будем считать его точным. Такие уж задачи встречаются.

Вычислим абсолютную погрешность :

Вычислим относительную погрешность:
, получены тысячные доли процента, таким образом, дифференциал обеспечил просто отличное приближение.

Ответ : , абсолютная погрешность вычислений , относительная погрешность вычислений

Следующий пример для самостоятельного решения:

Пример 4

в точке . Вычислить более точное значение функции в данной точке, оценить абсолютную и относительную погрешность вычислений.

Примерный образец чистового оформления и ответ в конце урока.

Многие обратили внимание, что во всех рассмотренных примерах фигурируют корни. Это не случайно, в большинстве случаев в рассматриваемой задаче действительно предлагаются функции с корнями.

Но для страждущих читателей я раскопал небольшой пример с арксинусом:

Пример 5

Вычислить приближенно с помощью дифференциала значение функции в точке

Этот коротенький, но познавательный пример тоже для самостоятельного решения. А я немного отдохнул, чтобы с новыми силами рассмотреть особое задание:

Пример 6

Вычислить приближенно с помощью дифференциала , результат округлить до двух знаков после запятой.

Решение: Что нового в задании? По условию требуется округлить результат до двух знаков после запятой. Но дело не в этом, школьная задача округления, думаю, не представляет для вас сложностей. Дело в том, что у нас дан тангенс с аргументом, который выражен в градусах. Что делать, когда вам предлагается для решения тригонометрическая функция с градусами? Например, и т. д.

Алгоритм решения принципиально сохраняется, то есть необходимо, как и в предыдущих примерах, применить формулу

Записываем очевидную функцию

Значение нужно представить в виде . Серьёзную помощь окажет таблица значений тригонометрических функций . Кстати, кто её не распечатал, рекомендую это сделать, поскольку заглядывать туда придется на протяжении всего курса изучения высшей математики.


Анализируя таблицу, замечаем «хорошее» значение тангенса, которое близко располагается к 47 градусам:

Таким образом :

После предварительного анализа градусы необходимо перевести в радианы . Так, и только так!

В данном примере непосредственно из тригонометрической таблицы можно выяснить, что . По формуле перевода градусов в радианы: (формулы можно найти в той же таблице).

Дальнейшее шаблонно:

Таким образом : (при вычислениях используем значение ). Результат, как и требовалось по условию, округлён до двух знаков после запятой.

Ответ:

Пример 7

Вычислить приближенно с помощью дифференциала , результат округлить до трёх знаков после запятой.

Это пример для самостоятельного решения. Полное решение и ответ в конце урока.

Как видите, ничего сложного, градусы переводим в радианы и придерживаемся обычного алгоритма решения.

Приближенные вычисления с помощью полного дифференциала функции двух переменных

Всё будет очень и очень похоже, поэтому, если вы зашли на эту страницу именно этим заданием, то сначала рекомендую просмотреть хотя бы пару примеров предыдущего пункта.

Для изучения параграфа необходимо уметь находить частные производные второго порядка , куда ж без них. На вышеупомянутом уроке функцию двух переменных я обозначал через букву . Применительно к рассматриваемому заданию удобнее использовать эквивалентное обозначение .

Как и для случая функции одной переменной, условие задачи может быть сформулировано по-разному, и я постараюсь рассмотреть все встречающиеся формулировки.

Пример 8

Решение: Как бы ни было записано условие, в самом решении для обозначения функции, повторюсь, лучше использовать не букву «зет», а .

А вот и рабочая формула:

Перед нами фактически старшая сестра формулы предыдущего параграфа. Переменная только прибавилась. Да что говорить, сам алгоритм решения будет принципиально таким же !

По условию требуется найти приближенное значение функции в точке .

Число 3,04 представим в виде . Колобок сам просится, чтобы его съели :
,

Число 3,95 представим в виде . Дошла очередь и до второй половины Колобка:
,

И не смотрите на всякие лисьи хитрости, Колобок есть - надо его съесть.

Вычислим значение функции в точке :

Дифференциал функции в точке найдём по формуле:

Из формулы следует, что нужно найти частные производные первого порядка и вычислить их значения в точке .

Вычислим частные производные первого порядка в точке :

Полный дифференциал в точке :

Таким образом, по формуле приближенное значение функции в точке :

Вычислим точное значение функции в точке :

Вот это значение является абсолютно точным.

Погрешности рассчитываются по стандартным формулам, о которых уже шла речь в этой статье.

Абсолютная погрешность:

Относительная погрешность:

Ответ: , абсолютная погрешность: , относительная погрешность:

Пример 9

Вычислить приближенное значение функции в точке с помощью полного дифференциала, оценить абсолютную и относительную погрешность.

Это пример для самостоятельного решения. Кто остановится подробнее на данном примере, тот обратит внимание на то, что погрешности вычислений получились весьма и весьма заметными. Это произошло по следующей причине: в предложенной задаче достаточно велики приращения аргументов: .

Общая закономерность таков а - чем больше эти приращения по абсолютной величине, тем ниже точность вычислений. Так, например, для похожей точки приращения будут небольшими: , и точность приближенных вычислений получится очень высокой.

Данная особенность справедлива и для случая функции одной переменной (первая часть урока).

Пример 10


Решение: Вычислим данное выражение приближенно с помощью полного дифференциала функции двух переменных:

Отличие от Примеров 8-9 состоит в том, что нам сначала необходимо составить функцию двух переменных: . Как составлена функция, думаю, всем интуитивно понятно.

Значение 4,9973 близко к «пятерке», поэтому: , .
Значение 0,9919 близко к «единице», следовательно, полагаем: , .

Вычислим значение функции в точке :

Дифференциал в точке найдем по формуле:

Для этого вычислим частные производные первого порядка в точке .

Производные здесь не самые простые, и следует быть аккуратным:

;


.

Полный дифференциал в точке :

Таким образом, приближенное значение данного выражения:

Вычислим более точное значение с помощью микрокалькулятора: 2,998899527

Найдем относительную погрешность вычислений:

Ответ: ,

Как раз иллюстрация вышесказанному, в рассмотренной задаче приращения аргументов очень малы , и погрешность получилась фантастически мизерной.

Пример 11

С помощью полного дифференциала функции двух переменных вычислить приближенно значение данного выражения. Вычислить это же выражение с помощью микрокалькулятора. Оценить в процентах относительную погрешность вычислений.

Это пример для самостоятельного решения. Примерный образец чистового оформления в конце урока.

Как уже отмечалось, наиболее частный гость в данном типе заданий - это какие-нибудь корни. Но время от времени встречаются и другие функции. И заключительный простой пример для релаксации:

Пример 12

С помощью полного дифференциала функции двух переменных вычислить приближенно значение функции , если

Решение ближе к дну страницы. Еще раз обратите внимание на формулировки заданий урока, в различных примерах на практике формулировки могут быть разными, но это принципиально не меняет сути и алгоритма решения.

Если честно, немного утомился, поскольку материал был нудноватый. Непедагогично это было говорить в начале статьи, но сейчас-то уже можно =) Действительно, задачи вычислительной математики обычно не очень сложны, не очень интересны, самое важное, пожалуй, не допустить ошибку в обычных расчётах.

Да не сотрутся клавиши вашего калькулятора!

Решения и ответы:

Пример 2 :

Решение: Используем формулу:
В данном случае: , ,


Таким образом:

Ответ:

Пример 4:

Решение: Используем формулу:
В данном случае: , ,


Таким образом:

Вычислим более точное значение функции с помощью микрокалькулятора:

Абсолютная погрешность:

Относительная погрешность:


Ответ: , абсолютная погрешность вычислений , относительная погрешность вычислений

Пример 5:

Решение: Используем формулу:

В данном случае: , ,


Таким образом :

Ответ:

Пример 7:

Решение: Используем формулу:
В данном случае: , ,

Как уже говорилось ранее, когда мы сравниваем точность измерения некоторой приближенной величины, мы используем абсолютную погрешность.

Понятие абсолютной погрешности

Абсолютная погрешность приближенного значения - это модуль разности точного значения и приближенного значения.
Абсолютную погрешность можно применять для сравнения точности приближений одинаковых величин, а если мы собираемся сравнивать точности приближения различных величин, тогда одной абсолютной погрешности недостаточно.

Например: Длина листа бумаги формата А4 равна (29.7 ± 0.1) см. А расстояние от Санкт-Петербурга до Москвы равно (650± 1) км. Абсолютная погрешность в первом случае не превосходит одного миллиметра, а во втором - одного километра. Вопрос, сравнить точность этих измерений.

Если вы думаете, что длина листа измерена точнее потому, что величина абсолютной погрешности не превышает 1 мм. То вы ошибаетесь. Напрямую сравнить эти величины нельзя. Проведем некоторые рассуждения.

При измерении длины листа абсолютная погрешность не превышает 0.1 см на 29.7 см, то есть в процентном соотношении это составляет 0.1/29.7 *100% = 0.33% измеряемой величины.

Когда мы измеряем расстояние от Санкт-Петербурга до Москвы абсолютная погрешность не превышает 1 км на 650 км, что в процентном соотношении составляет 1/650 *100% = 0.15% измеряемой величины. Видим, что расстояние между городами измерено точнее, чем длинна листа формата А4.

Понятие относительной погрешности

Здесь для оценки качества приближения вводится новое понятие относительная погрешность. Относительная погрешность - это частное от деления абсолютной погрешности на модуль приближенного значений измеряемой величины. Обычно, относительную погрешность выражают в процентах. В нашем примере мы получили две относительных погрешности равные 0.33% и 0.15%.

Как вы уже догадались, относительная погрешность величина всегда положительная. Это следует из того, что абсолютная погрешность всегда положительная величина, и мы делим её на модуль, а модуль тоже всегда положителен.