Составление системы уравнений. Деление десятичных дробей: правила, примеры, решения

Найдите первую цифру частного (результата деления). Для этого разделите первую цифру делимого на делитель. Результат напишите под делителем.

  • В нашем примере первой цифрой делимого является цифра 3. Разделите 3 на 12. Так 3 меньше 12, то результатом деления будет 0. Запишите 0 под делителем – это первая цифра частного.
  • Умножьте полученный результат на делитель. Напишите результат умножения под первой цифрой делимого, так как эту цифру вы только что разделили на делитель.

    • В нашем примере 0 × 12 = 0, поэтому напишите 0 под 3.
  • Вычтите результат умножения из первой цифры делимого. Запишите ответ на новой строке.

    • В нашем примере: 3 - 0 = 3. Напишите 3 непосредственно под 0.
  • Спустите вниз вторую цифру делимого. Для этого запишите следующую цифру делимого рядом с результатом вычитания.

    • В нашем примере делимым является число 30. Вторая цифра делимого – это 0. Спустите ее вниз, записав 0 возле 3 (результат вычитания). Вы получите число 30.
  • Полученный результат разделите на делитель. Вы найдете вторую цифру частного. Для этого разделите число, расположенное на самой нижней строке, на делитель.

    • В нашем примере разделите 30 на 12. 30 ÷ 12 = 2 плюс некоторый остаток (так как 12 х 2 = 24). Напишите 2 после 0 под делителем – это вторая цифра частного.
    • Если вы не можете найти подходящую цифру, перебирайте цифры до тех пор, пока результат умножения какой-либо цифры на делитель не окажется меньше и ближе всего к числу, расположенное последним в столбике. В нашем примере рассмотрим цифру 3. Умножьте ее на делитель: 12 х 3 = 36. Так как 36 больше 30, то цифра 3 не подходит. Теперь рассмотрим цифру 2. 12 х 2 = 24. 24 меньше 30, поэтому цифра 2 является верным решением.
  • Повторите описанные выше шаги, чтобы найти следующую цифру. Описанный алгоритм используется в любой задаче на деление в столбик.

    • Умножьте вторую цифру частного на делитель: 2 х 12 = 24.
    • Напишите результат умножения (24) под последним числом в столбике (30).
    • Вычтите меньшее число из большего. В нашем примере: 30 - 24 = 6. Запишите полученный результат (6) на новой строке.
  • Если в делимом остались цифры, которые можно спустить вниз, продолжите процесс вычисления. В противном случае перейдите к следующему шагу.

    • В нашем примере вы спустили вниз последнюю цифру делимого (0). Поэтому переходите к следующему шагу.
  • В случае необходимости воспользуйтесь десятичной запятой, чтобы расширить делимое. Если делимое делится на делитель нацело, то на последней строке вы получите цифру 0. Это означает, что задача решена, а ответ (в виде целого числа) записан под делителем. Но если в самом низу столбика находится любая цифра, отличная от 0, необходимо расширить делимое, поставив десятичную запятую и приписав 0. Напомним, что это не меняет значения делимого.

    • В нашем примере на последней строке находится цифра 6. Поэтому справа от 30 (делимое) напишите десятичную запятую, а затем напишите 0. Также десятичную запятую поставьте после найденных цифр частного, которые вы записываете под делителем (после этой запятой пока ничего не пишите!).
  • Повторите описанные действия, чтобы найти следующую цифру. Главное не забудьте поставить десятичную запятую как после делимого, так и после найденных цифр частного. В остальном процесс аналогичен процессу, описанному выше.

    • В нашем примере спустите вниз 0 (который вы написали после десятичной запятой). Вы получите число 60. Теперь разделите это число на делитель: 60 ÷ 12 = 5. Напишите 5 после 2 (и после десятичной запятой) под делителем. Это третья цифра частного. Таким образом, окончательный ответ: 2,5 (нулем перед 2 можно пренебречь).
  • 37. Деление на десятичную дробь

    Задача. Площадь прямоугольника равна 2,88 дм 2 , а его ширина равна 0,8 дм. Чему равна длина прямоугольника?

    Р е ш е н и е. Так как 2,88 дм 2 = 288 см 2 , а 0,8 дм = 8 см, то длина прямоугольника равна 288: 8, то есть 36 см = 3,6 дм. Мы нашли такое число 3,6, что 3,6 0,8 = 2,88. Оно является частным от деления 2,88 на 0,8.

    Ответ 3,6 можно получить, не переводя дециметры в сантиметры. Для этого надо умножить делитель 0,8 и делимое 2,88 на 10 (то есть перенести в них запятую на одну цифру вправо) и разделить 28,8 на 8. Снова получим: .

    Чтобы разделить число на десятичную дробь , надо:
    1) в делимом и делителе перенести запятую вправо на столько цифр, сколько их после запятой в делителе;
    2) после этого выполнить деление на натуральное число.

    Пример 1. Разделим 12,096 на 2,24. Перенесём в делимом и делителе запятую на 2 цифры вправо. Получим числа 1209,6 и 224.

    Так как , то и .

    Пример 2. Разделим 4,5 на 0,125. Здесь надо перенести в делимом и делителе запятую на 3 цифры вправо. Так как в делимом только одна цифра после запятой, то припишем к нему справа два нуля. После переноса запятой получаем числа 4500 и 125.

    Так как , то и .

    Из примеров 1 и 2 видно, что при делении числа на неправильную дробь это число уменьшается или не изменяется, а при делении на правильную десятичную дробь оно увеличивается: , а .

    Разделим 2,467 на 0,01. После переноса запятой в делимом и делителе на 2 цифры вправо получаем, что частное равно 246,7: 1, то есть 246,7. Значит, и 2,467: 0,01 = 246,7. Отсюда получаем правило:

    Чтобы разделить десятичную дробь на 0,1; 0,01; 0,001 , надо перенести в ней запятую вправо на столько цифр, сколько в делителе стоит нулей перед единицей (то есть умножить её на 10, 100, 1000).

    Если цифр не хватает, надо сначала приписать в конце дроби несколько нулей.

    Например, .

    1443. Найдите частное и выполните проверку умножением:

    а) 0,8: 0,5; б) 3,51: 2,7; в) 14,335: 0,61.

    1444. Найдите частное и выполните проверку делением:

    а) 0,096: 0,12; 6)0,126:0,9; в) 42,105: 3,5.

    1445. Выполните деление:

    1446. Запишите выражения:

    а) частное от деления суммы а и 2,6 на разность b и 8,5;
    б) сумму частного х и 3,7 и частного 3,1 и у.

    1447. Прочитайте выражение:

    а) m: 12,8 - n: 4,9; б) (х + 0,7) : (у + 3,4); в) (а: b) (8: с).

    1448. Шаг человека равен 0,8 м. Сколько шагов надо ему сделать, чтобы пройти расстояние 100 м?

    1449. Алёша проехал на поезде 162,5 км за 2,6 ч. С какой скоростью шёл поезд?

    1450. Найдите массу 1 см 3 льда, если масса 3,5 см 3 льда равна 3,08 г.

    1451. Верёвку разрезали на две части. Длина одной части 3,25 м, а длина другой части в 1,3 раза меньше первой. Какова была длина верёвки?

    1452. В первый пакет вошло 6,72 кг муки, что в 2,4 раза больше, чем во второй пакет. Сколько килограммов муки вошло в оба пакета?

    1453. На приготовление уроков Боря затратил в 3,5 раза меньше времени, чем на прогулку. Сколько времени ушло у Бори на прогулку и на приготовление уроков, если прогулка заняла 2,8 ч?

    В школе эти действия изучаются от простого к сложному. Поэтому непременно полагается хорошо усвоить алгоритм выполнения названных операций на простых примерах. Чтобы потом не возникло трудностей с делением десятичных дробей в столбик. Ведь это самый сложный вариант подобных заданий.

    Этот предмет требует последовательного изучения. Пробелы в знаниях здесь недопустимы. Такой принцип должен усвоить каждый ученик уже в первом классе. Поэтому при пропуске нескольких уроков подряд материал придется освоить самостоятельно. Иначе позже возникнут проблемы не только с математикой, но и другими предметами, связанными с ней.

    Второе обязательное условие успешного изучения математики — переходить к примерам на деление в столбик только после того, как освоены сложение, вычитание и умножение.

    Ребенку будет трудно делить, если он не выучил таблицу умножения. Кстати, ее лучше учить по таблице Пифагора. Там нет ничего лишнего, да и усваивается умножение в таком случае проще.

    Как умножаются в столбик натуральные числа?

    Если возникает затруднение в решении примеров в столбик на деление и умножение, то начинать устранять проблему полагается с умножения. Поскольку деление является обратной операцией умножению:

    1. До того как перемножать два числа, на них нужно внимательно посмотреть. Выбрать то, в котором больше разрядов (длиннее), записать его первым. Под ним разместить второе. Причем цифры соответствующего разряда должны оказаться под тем же разрядом. То есть самая правая цифра первого числа должна быть над самой правой второго.
    2. Умножьте крайнюю правую цифру нижнего числа на каждую цифру верхнего, начиная справа. Запишите ответ под чертой так, чтобы его последняя цифра была под той на которую умножали.
    3. То же повторите с другой цифой нижнего числа. Но результат от умножения при этом нужно сместить на одну цифру влево. При этом его последняя цифра окажется под той, на которую умножали.

    Продолжать такое умножение в столбик до тех пор, пока не закончатся цифры во втором множителе. Теперь их нужно сложить. Это и будет искомый ответ.

    Алгоритм умножения в столбик десятичных дробей

    Сначала полагается представить, что даны не десятичные дроби, а натуральные. То есть убрать из них запятые и далее действовать так, как описано в предыдущем случае.

    Отличие начинается, когда записывается ответ. В этот момент необходимо сосчитать все цифры, которые стоят после запятых в обеих дробях. Именно столько их нужно отсчитать от конца ответа и там поставить запятую.

    Удобно проиллюстрировать этот алгоритм на примере: 0,25 х 0,33:

    С чего начать обучение делению?

    До того как решать примеры на деление в столбик, полагается запомнить названия чисел, которые стоят в примере на деление. Первое из них (то, которое делится) — делимое. Второе (на него делят) — делитель. Ответ — частное.

    После этого на простом бытовом примере объясним суть этой математической операции. Например, если взять 10 конфет, то поделить их поровну между мамой и папой легко. А как быть, если нужно раздать их родителям и брату?

    После этого можно знакомиться с правилами деления и осваивать их на конкретных примерах. Сначала простых, а потом переходить ко все более сложным.

    Алгоритм деления чисел в столбик

    Вначале представим порядок действий для натуральных чисел, делящихся на однозначное число. Они будут основой и для многозначных делителей или десятичных дробей. Только тогда полагается внести небольшие изменения, но об этом позже:

    • До того как делать деление в столбик, нужно выяснить, где делимое и делитель.
    • Записать делимое. Справа от него - делитель.
    • Прочертить слева и снизу около последнего уголок.
    • Определить неполное делимое, то есть число, которое будет минимальным для деления. Обычно оно состоит из одной цифры, максимум из двух.
    • Подобрать число, которое будет первым записано в ответ. Оно должно быть таким, сколько раз делитель помещается в делимом.
    • Записать результат от умножения этого числа на делитель.
    • Написать его под неполным делимом. Выполнить вычитание.
    • Снести к остатку первую цифру после той части, которая уже разделена.
    • Снова подобрать число для ответа.
    • Повторить умножение и вычитание. Если остаток равен нулю и делимое закончилось, то пример сделан. В противном случае повторить действия: снести цифру, подобрать число, умножить, вычесть.

    Как решать деление в столбик, если в делителе больше одной цифры?

    Сам алгоритм полностью совпадает с тем, что был описан выше. Отличием будет количество цифр в неполном делимом. Их теперь минимум должно быть две, но если они оказываются меньше делителя, то работать полагается с первыми тремя цифрами.

    Существует еще один нюанс в таком делении. Дело в том, что остаток и снесенная к нему цифра иногда не делятся на делитель. Тогда полагается приписать еще одну цифру по порядку. Но при этом в ответ необходимо поставить ноль. Если осуществляется деление трехзначных чисел в столбик, то может потребоваться снести больше двух цифр. Тогда вводится правило: нолей в ответе должно быть на один меньше, чем количество снесенных цифр.

    Рассмотреть такое деление можно на примере - 12082: 863.

    • Неполным делимым в нем оказывается число 1208. В него число 863 помещается только один раз. Поэтому в ответ полагается поставить 1, а под 1208 записать 863.
    • После вычитания получается остаток 345.
    • К нему нужно снести цифру 2.
    • В числе 3452 четыре раза умещается 863.
    • Четверку необходимо записать в ответ. Причем при умножении на 4 получается именно это число.
    • Остаток после вычитания равен нулю. То есть деление закончено.

    Ответом в примере будет число 14.

    Как быть, если делимое заканчивается на ноль?

    Или несколько нолей? В этом случае нулевой остаток получается, а в делимом еще стоят нули. Отчаиваться не стоит, все проще, чем может показаться. Достаточно просто приписать к ответу все нули, которые остались не разделенными.

    Например, нужно поделить 400 на 5. Неполное делимое 40. В него 8 раз помещается пятерка. Значит, в ответ полагается записать 8. При вычитании остатка не остается. То есть деление закончено, но в делимом остался ноль. Его придется приписать к ответу. Таким образом, при делении 400 на 5 получается 80.

    Что делать, если разделить нужно десятичную дробь?

    Опять же, это число похоже на натуральное, если бы не запятая, отделяющая целую часть от дробной. Это наводит на мысль о том, что деление десятичных дробей в столбик подобно тому, которое было описано выше.

    Единственным отличием будет пункт с запятой. Ее полагается поставить в ответ сразу, как только снесена первая цифра из дробной части. По-другому это можно сказать так: закончилось деление целой части — поставь запятую и продолжай решение дальше.

    Во время решения примеров на деление в столбик с десятичными дробями нужно помнить, что в части после запятой можно приписать любое количество нолей. Иногда это нужно для того, чтобы доделить числа до конца.

    Деление двух десятичных дробей

    Оно может показаться сложным. Но только вначале. Ведь то, как выполнить деление в столбик дробей на натуральное число, уже понятно. Значит, нужно свести этот пример к уже привычному виду.

    Сделать это легко. Нужно умножить обе дроби на 10, 100, 1 000 или 10 000, а может быть, на миллион, если этого требует задача. Множитель полагается выбирать исходя из того, сколько нолей стоит в десятичной части делителя. То есть в результате получится, что делить придется дробь на натуральное число.

    Причем это будет в худшем случае. Ведь может получиться так, что делимое от этой операции станет целым числом. Тогда решение примера с делением в столбик дробей сведется к самому простому варианту: операции с натуральными числами.

    В качестве примера: 28,4 делим на 3,2:

    • Сначала их необходимо умножить на 10, поскольку во втором числе после запятой стоит только одна цифра. Умножение даст 284 и 32.
    • Их полагается разделить. Причем сразу все число 284 на 32.
    • Первым подобранным числом для ответа является 8. От его умножения получается 256. Остатком будет 28.
    • Деление целой части закончилось, и в ответ полагается поставить запятую.
    • Снести к остатку 0.
    • Снова взять по 8.
    • Остаток: 24. К нему приписать еще один 0.
    • Теперь брать нужно 7.
    • Результат умножения - 224, остаток - 16.
    • Снести еще один 0. Взять по 5 и получится как раз 160. Остаток — 0.

    Деление закончено. Результат примера 28,4:3,2 равен 8,875.

    Что делать, если делитель равен 10, 100, 0,1, или 0,01?

    Так же как и с умножением, деление в столбик здесь не понадобится. Достаточно просто переносить запятую в нужную сторону на определенное количество цифр. Причем по этому принципу можно решать примеры как с целыми числами, так и с десятичными дробями.

    Итак, если нужно делить на 10, 100 или 1 000, то запятая переносится влево на такое количество цифр, сколько нулей в делителе. То есть, когда число делится на 100, запятая должна сместиться влево на две цифры. Если делимое — натуральное число, то подразумевается, что запятая стоит в его конце.

    Это действие дает такой же результат, как если бы число было необходимо умножить на 0,1, 0,01 или 0,001. В этих примерах запятая тоже переносится влево на количество цифр, равное длине дробной части.

    При делении на 0,1 (и т. д.) или умножении на 10 (и т. д.) запятая должна переместиться вправо на одну цифру (или две, три, в зависимости от количества нулей или длины дробной части).

    Стоит отметить, что количества цифр, данных в делимом, может быть недостаточным. Тогда слева (в целой части) или справа (после запятой) можно приписать недостающие нули.

    Деление периодических дробей

    В этом случае не удастся получить точный ответ при делении в столбик. Как решать пример, если встретилась дробь с периодом? Здесь полагается переходить к обыкновенным дробям. А потом выполнять их деление по изученным ранее правилам.

    Например разделить нужно 0,(3) на 0,6. Первая дробь — периодическая. Она преобразуется в дробь 3/9, которая после сокращения даст 1/3. Вторая дробь — конечная десятичная. Ее записать обыкновенной еще проще: 6/10, что равно 3/5. Правило деления обыкновенных дробей предписывает заменять деление умножением и делитель — обратным числом. То есть пример сводится к умножению 1/3 на 5/3. Ответом будет 5/9.

    Если в примере разные дроби...

    Тогда возможны несколько вариантов решения. Во-первых, обыкновенную дробь можно попытаться перевести в десятичную. Потом делить уже две десятичные по указанному выше алгоритму.

    Во-вторых, каждая конечная десятичная дробь может быть записана в виде обыкновенной. Только это не всегда удобно. Чаще всего такие дроби оказываются огромными. Да и ответы получаются громоздкими. Поэтому первый подход считается более предпочтительным.

    § 107. Сложение десятичных дробей.

    Сложение десятичных дробей выполняется так же, как и сложение целых чисел. Убедимся в этом на примерах.

    1) 0,132 + 2,354. Подпишем слагаемые одно под другим.

    Здесь от сложения 2 тысячных с 4 тысячными получилось 6 тысячных;
    от сложения 3 сотых с 5 сотыми получилось 8 сотых;
    от сложения 1 десятой с 3 десятыми -4 десятых и
    от сложения 0 целых с 2 целыми - 2 целых.

    2) 5,065 + 7,83.

    Во втором слагаемом нет тысячных долей, поэтому важно не допускать ошибки при подписывании слагаемых друг под другом.

    3) 1,2357 + 0,469 + 2,08 + 3,90701.

    Здесь при сложении тысячных долей получилась 21 тысячная; мы написали 1 под тысячными, а 2 прибавили к сотым, таким образом, в разряде сотых у нас получились следующие слагаемые: 2 + 3 + 6 + 8 + 0; в сумме они дают 19 сотых, мы подписали 9 под сотыми, а 1 присчитали к десятым и т. д.

    Таким образом, при сложении десятичных дробей надо соблюдать следующий порядок: дроби подписывать одна под другой так, чтобы во всех слагаемых одинаковые разряды находились друг под другом и все запятые стояли в одном и том же вертикальном столбце; справа от десятичных знаков некоторых слагаемых приписывают, хотя бы мысленно, такое число нулей, чтобы все слагаемые после запятой имели одинаковое число цифр. Затем выполняют сложение по разрядам, начиная с правой стороны, и в полученной сумме ставят запятую в том же самом вертикальном столбце, в каком она находится в данных слагаемых.

    § 108. Вычитание десятичных дробей.

    Вычитание десятичных дробей выполняется так же, как и вычитание целых чисел. Покажем это на примерах.

    1) 9,87 - 7,32. Подпишем вычитаемое под уменьшаемым так, чтобы единицы одного разряда находились друг под другом:

    2) 16,29 - 4,75. Подпишем вычитаемое под уменьшаемым, как в первом примере:

    Чтобы сделать вычитание десятых, надо было занять одну целую единицу от 6 и раздробить её в десятые доли.

    3) 14,0213- 5,350712. Подпишем вычитаемое под уменьшаемым:

    Вычитание было выполнено следующим образом: так как мы не можем вычесть 2 миллионных из 0, то следует обратиться к ближайшему разряду, стоящему слева, т. е. к стотысячным, но на месте стотысячных тоже стоит нуль, поэтому берём из 3 десятитысячных 1 десятитысячную и раздробляем её в стотысячные, получаем 10 стотысячных, из них 9 стотысячных оставляем в разряде стотысячных, а 1 стотысячную раздробляем в миллионные, получаем 10 миллионных. Таким образом, в трёх последних разрядах у нас получилось: миллионных 10, стотысячных 9, десятитысячных 2. Эти числа для большей ясности и удобства (чтобы не позабыть) записаны сверху над соответствующими дробными разрядами уменьшаемого. Теперь можно приступить к вычитанию. Из 10 миллионных вычитаем 2 миллионных, получаем 8 миллионных; из 9 стотысячных вычитаем 1 стотысячную, получаем 8 стотысячных и т. д.

    Таким образом, при вычитании десятичных дробей соблюдается следующий порядок: подписывают вычитаемое под уменьшаемым так, чтобы одинаковые разряды находились друг под другом и все запятые стояли в одном и том же вертикальном столбце; справа приписывают, хотя бы мысленно, в уменьшаемом или вычитаемом столько нулей, чтобы они имели одинаковое число цифр, затем выполняют вычитание по разрядам, начиная с правой стороны, и в полученной разности ставят запятую в том же самом вертикальном столбце, в каком она находится в уменьшаемом и вычитаемом.

    § 109. Умножение десятичных дробей.

    Рассмотрим несколько примеров умножения десятичных дробей.

    Чтобы найти произведение этих чисел, мы можем рассуждать следующим образом: если множитель увеличить в 10 раз, то оба сомножителя будут целыми числами и мы можем их тогда перемножить по правилам умножения целых чисел. Но мы знаем, что при увеличении одного из сомножителей в несколько раз произведение увеличивается во столько же раз. Значит, число, которое получится от умножения целых сомножителей, т. е. 28 на 23, в 10 раз больше истинного произведения, а чтобы получить истинное произведение, нужно найденное произведение уменьшить в 10 раз. Следовательно, здесь придётся выполнить один раз умножение на 10 и один раз деление на 10, но умножение и деление на 10 выполняется путём перенесения запятой вправо и влево на один знак. Поэтому нужно поступить так: во множителе перенести запятую вправо на один знак, от этого он будет равен 23, затем нужно перемножить полученные целые числа:

    Это произведение в 10 раз больше истинного. Следовательно, его надо уменьшить в 10 раз, для чего перенесём запятую на один знак влево. Таким образом, получим

    28 2,3 = 64,4.

    В целях проверки можно десятичную дробь написать со знаменателем и выполнить действие по правилу умножения обыкновенных дробей, т. е.

    2) 12,27 0,021.

    Отличие этого примера от предыдущего состоит в том, что здесь оба сомножителя представлены десятичными дробями. Но мы и здесь в процессе умножения не будем обращать внимания на запятые, т. е. временно увеличим множимое в 100 раз, а множитель в 1 000 раз, отчего произведение увеличится в 100 000 раз. Таким образом, умножая 1 227 на 21, получим:

    1 227 21 = 25 767.

    Принимая во внимание, что полученное произведение в 100 000 раз больше истинного, мы должны теперь уменьшить его в 100 000 раз путём надлежащей постановки в нём запятой, тогда получим:

    32,27 0,021 = 0,25767.

    Проверим:

    Таким образом, чтобы перемножить две десятичные дроби, достаточно, не обращая внимания на запятые, перемножить их как целые числа и в произведении отделить запятой с правой стороны столько десятичных знаков, сколько их было во множимом и во множителе вместе.

    В последнем примере получилось произведение с пятью десятичными знаками. Если такая большая точность не требуется, то делается округление десятичной дроби. При округлении следует пользоваться тем правилом, какое было указано для целых чисел .

    § 110. Умножение при помощи таблиц.

    Умножение десятичных дробей можно иногда выполнять при помощи таблиц. Для этой цели можно, например, воспользоваться теми таблицами умножения двузначных чисел, описание которых было дано раньше .

    1) Умножим 53 на 1,5.

    Будем перемножать 53 на 15. В таблице это произведение равно 795. Мы нашли произведение 53 на 15, но у нас второй множитель был в 10 раз меньше, значит, и произведение нужно уменьшить в 10 раз, т. е.

    53 1,5 = 79,5.

    2) Умножим 5,3 на 4,7.

    Сначала найдём в таблице произведение 53 на 47, это будет 2 491. Но так как мы увеличили множимое и множитель в общей сложности в 100 раз, то и полученное произведение в 100 раз больше, чем следует; поэтому мы должны уменьшить это произведение в 100 раз:

    5,3 4,7 = 24,91.

    3) Умножим 0,53 на 7,4.

    Сначала найдём в таблице произведение 53 на 74; это будет 3 922. Но так как мы увеличили множимое в 100 раз, а множитель в 10 раз, то произведение увеличилось в 1 000 раз; поэтому мы теперь должны его уменьшить в 1 000 раз:

    0,53 7,4 = 3,922.

    § 111. Деление десятичных дребей.

    Деление десятичных дробей мы рассмотрим в таком порядке:

    1. Деление десятичной дроби на целое число,

    1. Деление десятичной дроби на целое число.

    1) Разделим 2,46 на 2.

    Мы разделили на 2 сначала целые, потом десятые доли и, наконец, сотые доли.

    2) Разделим 32,46 на 3.

    32,46: 3 = 10,82.

    Мы разделили 3 десятка на 3, затем стали делить 2 единицы на 3; так как число единиц делимого (2) меньше делителя (3), то пришлось в частном поставить 0; далее, к остатку мы снесли 4 десятых и разделили 24 десятых на 3; получили в частном 8 десятых и, наконец, разделили 6 сотых.

    3) Разделим 1,2345 на 5.

    1,2345: 5 = 0,2469.

    Здесь в частном на первом месте получился нуль целых, так как одна целая не делится на 5.

    4) Разделим 13,58 на 4.

    Особенность этого примера заключается в том, что когда мы получили в частном 9 сотых, то обнаружился остаток, равный 2 сотым, мы раздробили зтот остаток в тысячные доли, получили 20 тысячных и довели деление до конца.

    Правило. Деление десятичной дроби на целое число выполняется так же, как и деление целых чисел, причём получающиеся остатки обращают в десятичные доли, всё более и более мелкие; деление продолжают до тех пор, пока в остатке не получится нуль.

    2. Деление десятичной дроби на десятичную дробь.

    1) Разделим 2,46 на 0,2.

    Мы уже умеем делить десятичную дробь на целое число. Подумаем, нельзя ли и этот новый случай деления свести к предыдущему? В своё время мы рассматривали замечательное свойство частного, состоящее в том, что оно остаётся без изменения при одновременном увеличении или уменьшении делимого и делителя в одинаковое число раз. Мы без труда выполнили бы деление предложенных нам чисел, если бы делитель был целым числом. Для этого достаточно увеличить его в 10 раз, а для получения правильного частного необходимо во столько же раз, т. е. в 10 раз, увеличить и делимое. Тогда деление данных чисел заменится делением таких чисел:

    причём никаких поправок в частном делать уже не придётся.

    Выполним это деление:

    Значит, 2,46: 0,2 = 12,3.

    2) Разделим 1,25 на 1,6.

    Увеличиваем делитель (1,6) в 10 раз; чтобы частное не изменилось, увеличиваем в 10 раз и делимое; 12 целых не делится на 16, поэтому пишем в частном 0 и делим 125 десятых на 16, получаем в частном 7 десятых и в остатке 13. Раздробляем 13 десятых в сотые путём приписывания нуля и делим 130 сотых на 16 и т. д. Обращаем внимание на следующее:

    а) когда в частном не получается целых, то на их месте пишется нуль целых;

    б) когда после снесения к остатку цифры делимого получается число, которое не делится на делитель, то в частном пишется нуль;

    в) когда после снесения последней цифры делимого деление не оканчивается, то, приписывая к остаткам нули, продолжают деление;

    г) если делимое - целое число, то при делении его на десятичную дробь увеличение его осуществляется посредством приписывания к нему нулей.

    Таким образом, чтобы разделить число на десятичную дробь, нужно отбросить в делителе запятую, а затем увеличить делимое во столько раз, во сколько увеличился делитель при отбрасывании в нём запятой, после чего выполнить деление по правилу деления десятичной дроби на целое число.

    § 112. Приближённое частное.

    В предыдущем параграфе мы рассмотрели деление десятичных дробей, причём во всех решённых нами примерах деление доводилось до конца, т. е. получалось точное частное. Однако в большинстве случаев точное частное не может быть получено, как бы далеко мы ни продолжали деление. Вот один из таких случаев: разделим 53 на 101.

    Мы уже получили пять цифр в частном, а деление ещё не окончилось и нет надежды, что оно когда-либо окончится, так как в остатках у нас начинают появляться цифры, которые встречались уже ранее. В частном также будут повторяться числа: очевидно, что вслед за цифрой 7 появится цифра 5, затем 2 и т. д. без конца. В таких случаях прерывают деление и ограничиваются несколькими первыми цифрами частного. Такое частное называется приближённым. Как при этом нужно выполнять деление, мы покажем на примерах.

    Пусть требуется 25 разделить на 3. Очевидно, что точного частного, выраженного целым числом или десятичной дробью, от такого деления получиться не может. Поэтому мы будем искать приближённое частное:

    25: 3 = 8 и остаток 1

    Приближённое частное равно 8; оно, конечно, меньше точного частного, потому что имеется остаток 1. Чтобы получить точное частное, нужно к найденному приближённому частному, т. е. к 8, прибавить дробь, которая получится от деления остатка, равного 1, на 3; это будет дробь 1 / 3 . Значит, точное частное выразится смешанным числом 8 1 / 3 . Так как 1 / 3 представляет собой правильную дробь, т. е. дробь, меньшую единицы , то, отбрасывая её, мы допустим погрешность , которая меньше единицы . Частное 8 будет приближённым частным с точностью до единицы с недостатком. Если мы вместо 8 возьмём в частном 9, то тоже допустим погрешность, которая меньше единицы, так как мы прибавим не целую единицу, a 2 / 3 . Такое частное будет приближённым частным с точностью до единицы с избытком.

    Возьмём теперь другой пример. Пусть требуется 27 разделить на 8. Так как и здесь не получится точного частного, выраженного целым числом, то мы будем искать приближённое частное:

    27: 8 = 3 и остаток 3.

    Здесь погрешность равна 3 / 8 , она меньше единицы, значит, приближённое частное (3) найдено с точностью до единицы с недостатком. Продолжим деление: раздробим остаток 3 в десятые доли, получим 30 десятых; разделим их на 8.

    Мы получили в частном на месте десятых 3 и в остатке б десятых. Если мы в частном ограничимся числом 3,3, а остаток 6 отбросим, то мы допустим погрешность, меньшую одной десятой. Почему? Потому что точное частное получилось бы тогда, когда мы прибавили бы к 3,3 ещё результат деления 6 десятых на 8; от этого деления получилось бы 6 / 80 , что составляет меньше одной десятой. (Проверьте!) Таким образом, если в частном мы ограничимся десятыми долями, то можно будет сказать, что мы нашли частное с точностью до одной десятой (с недостатком).

    Продолжим деление, чтобы найти ещё один десятичный знак. Для этого раздробим 6 десятых в сотые доли и получим 60 сотых; разделим их на 8.

    В частном на третьем месте получилось 7 и в остатке 4 сотых; если мы их отбросим, то допустим погрешность, меньшую одной сотой, потому что 4 сотых, делённые на 8, составляют меньше одной сотой. В таких случаях говорят, что частное найдено с точностью до одной сотой (с недостатком).

    В примере, который мы сейчас рассматриваем, можно получить точное частное, выраженное десятичной дробью. Для этого достаточно последний остаток, 4 сотых, раздробить в тысячные и выполнить деление на 8.

    Однако в огромном большинстве случаев получить точное частное невозможно и приходится ограничиваться его приближёнными значениями. Такой пример мы сейчас и рассмотрим:

    40: 7 = 5,71428571...

    Точки, поставленные в конце числа, обозначают, что деление не закончено, т. е. равенство приближённое. Обычно приближённое равенство записывают так:

    40: 7 = 5,71428571.

    Мы взяли частное с восемью десятичными знаками. Но если такая большая точность не требуется, можно ограничиться лишь целой частью частного, т. е. числом 5 (точнее 6); для большей точности можно было бы учесть десятые доли и взять частное равным 5,7; если и эта точность почему-либо недостаточна, то можно остановиться на сотых и взять 5,71, и т. д. Выпишем отдельные частные и назовём их.

    Первое приближённое частное с точностью до единицы 6.

    Второе » » » до одной десятой 5,7.

    Третье » » » до одной сотой 5,71.

    Четвёртое » » » до одной тысячной 5,714.

    Таким образом, чтобы найти приближённое частное с точностью до какого-нибудь, например, 3-го десятичного знака (т. е. до одной тысячной), прекращают деление, как только находят этот знак. При этом нужно помнить правило, изложенное в § 40 .

    § 113. Простейшие задачи на проценты.

    После изучения десятичных дробей мы решим ещё несколько задач на проценты.

    Эти задачи подобны тем, какие мы решали в отделе обыкновенных дробей; но теперь сотые доли мы будем записывать в форме десятичных дробей, т. е. без явно обозначенного знаменателя.

    Прежде всего нужно уметь легко переходить от обыкновенной дроби к десятичной со знаменателем 100. Для этого надо числитель разделить на знаменатель:

    В приводимой ниже таблице показано, каким образом число со значком % (процент) заменяется десятичной дробью со знаменателем 100:

    Рассмотрим теперь несколько задач.

    1. Нахождение процентов данного числа.

    Задача 1. В одном селе проживает всего 1 600 человек. Число детей школьного возраста составляет 25% от общего числа жителей. Сколько детей школьного возраста в этом селе?

    В этой задаче нужно найти 25%, или 0,25, от 1 600. Задача решается умножением:

    1 600 0,25 = 400 (детей).

    Следовательно, 25% от 1 600 составляют 400.

    Для ясного понимания этой задачи полезно напомнить, что на каждую сотню населения приходится 25 детей школьного возраста. Следовательно, чтобы найти число всех детей школьного возраста, можно сначала узнать, сколько сотен в числе 1 600 (16), а затем 25 умножить на число сотен (25 х 16 = 400). Этим путём можно проверить справедливость решения.

    Задача 2. Сберегательные кассы дают вкладчикам ежегодно 2% дохода. Сколько дохода за год получит вкладчик, положивший в кассу: а) 200 руб.? б) 500 руб.? в) 750 руб.? г)1000руб.?

    Во всех четырёх случаях для решения задачи нужно будет вычислить 0,02 от указанных сумм, т. е. каждое из данных чисел придётся умножить на 0,02. Сделаем это:

    а) 200 0,02 = 4 (руб.),

    б) 500 0,02 = 10 (руб.),

    в) 750 0,02 = 15 (руб.),

    г) 1 000 0,02 = 20 (руб.).

    Каждый из этих случаев может быть проверен следующими соображениями. Сберегательные кассы дают вкладчикам 2% дохода, т. е. 0,02 от положенной на сбережение суммы. Если бы сумма равнялась 100 руб., то 0,02 от неё составляли бы 2 руб. Значит, каждая сотня приносит вкладчику 2 руб. дохода. Поэтому в каждом из рассмотренных случаев достаточно сообразить, сколько в данном числе сотен, и на это число сотен умножать 2 руб. В примере а) сотен 2, значит,

    2 2 = 4 (руб.).

    В примере г) сотен 10, значит,

    2 10 = 20 (руб.).

    2. Нахождение числа по его процентам.

    Задача 1. Весной школа выпустила 54 ученика, что составляет 6% от общего числа учащихся. Сколько всего учащихся было в школе в истекшем учебном году?

    Уясним сначала смысл этой задачи. Школа выпустила 54 ученика, что составляет 6% от общего числа обучавшихся, или, иными словами, 6 сотых (0,06) от всех учеников школы. Значит, нам известна часть учащихся, выраженная числом (54) и дробью (0,06), а по этой дроби мы должны найти всё число. Таким образом, перед нами обыкновенная задача на нахождение числа по его дроби (§90 п.6). Задачи такого типа решаются делением:

    Значит, в школе всего было 900 учащихся.

    Такие задачи полезно проверять решением обратной задачи, т. е. после решения задачи следует, хотя бы в уме, решить задачу первого типа (нахождение процентов данного числа): принять найденное число (900) за данное и найти от него указанный в решённой задаче процент, а именно:

    900 0,06 = 54.

    Задача 2. Семья расходует на питание в течение месяца 780 руб., что составляет 65% месячного заработка отца. Определить его месячный заработок.

    Эта задача имеет такой же смысл, что и предыдущая. В ней даётся часть месячного заработка, выраженная в рублях (780 руб.), и указывается, что эта часть составляет 65%, или 0,65, от всего заработка. А искомым является весь заработок:

    780: 0,65 = 1 200.

    Следовательно, искомый заработок составляет 1200 руб.

    3. Нахождение процентного отношения чисел.

    Задача 1. В школьной библиотеке всего 6 000 книг. Среди них 1 200 книг по математике. Сколько процентов математические книги составляют от числа всех книг, имеющихся в библиотеке?

    Мы уже рассматривали (§97) такого рода задачи и пришли к выводу, что для вычисления процентного отношения двух чисел нужно найти отношение этих чисел и умножить его на 100.

    В нашей задаче нужно найти процентное отношение чисел 1 200 и 6 000.

    Найдём сначала их отношение, а затем умножим его на 100:

    Таким образом, процентное отношение чисел 1 200 и 6 000 равно 20. Иными словами, математические книги составляют 20% от общего числа всех книг.

    Для проверки решим обратную задачу: найти 20% от 6 000:

    6 000 0,2 = 1 200.

    Задача 2. Завод должен получить 200 т угля. Уже привезли 80 т. Сколько процентов угля доставлено на завод?

    В этой задаче спрашивается, сколько процентов одно число (80) составляет от другого (200). Отношение этих чисел будет 80 / 200 . Умножим его на 100:

    Значит, доставлено 40% угля.